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ABSTRACT

 

Measurements of the velocities of the extensional and flexural plate 

modes were made along three directions of propagation in four graphite/

epoxy composite plates.  The acoustic signals were generated by simulated 

acoustic emission events (pencil lead breaks or Hsu-Neilsen sources) and 

detected by broad band ultrasonic transducers.  The first arrival of the 

extensional plate mode, which is nondispersive at low frequencies, was 

measured at a number of different distances from the source along the prop-

agation direction of interest.  The velocity was determined by plotting 

the distance versus arrival time and computing its slope.  Because of the 

large dispersion of the flexural mode, a Fourier phase velocity technique 

was used to characterize this mode.  The velocity was measured up to a 

frequency of 160 kHz.  Theoretical predictions of the velocities of these 

modes were also made and compared with experimental observations.  Clas-

sical plate theory yielded good agreement with the measured extensional 

velocities.  For predictions of the dispersion of the flexural mode, Mind-

lin plate theory, which includes the effects of shear deformation and 

rotatory inertia was shown to give better agreement with the experimental 

measurements.  
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INTRODUCTION

 

Acoustic signals propagate in thin plates as the extensional and flex-

ural plate modes when the wavelength of the acoustic signal is much larger 

than the plate thickness.  This fact is of importance in a number of non-

destructive evaluation (NDE) techniques that use acoustic waves such as 

the acoustic emission (AE) technique.  The propagation of AE signals as 

plate modes has been demonstrated by a number of researchers.  It was shown 

using simulated AE sources (pencil lead breaks) by Gorman [1] on thin alu-

minum and gr/ep composite plates and by Gorman and Prosser [2] on thin 

aluminum plates.  A typical signal from a simulated AE source (pencil lead 

break) which identifies these two modes is shown in Figure 1.  The exten-

sional and flexural mode components of this waveform are identified in 

this figure.  AE signals from transverse matrix cracking sources in gr/ep 

composite plates were also shown to propagate as plate modes by Gorman and 

Ziola [3].  Smith [4] showed that crack growth events in thin aluminum 

plates under spectrum fatigue loading produced signals that propagated as 

plate modes.

The propagation of acoustic signals as plate modes in thin plates also 

occurs in other NDE techniques such as conventional ultrasonic testing, 

acousto-ultrasonics, and laser generated ultrasonics.  Duke et al. [5] 

suggested that the acousto-ultrasonic technique generated plate modes, 

made tone burst measurements of the velocities of the plate modes, and 

compared them with predictions based on classical plate theory (CPT).  

Schumacher et al. [6] demonstrated the existence of plate modes in laser 

generated ultrasonic signals in thin plates which were detected by non-

contacting laser interferometers.  They also made measurements of the dis-

persion of these two modes in steel plates and compared them with theory 

and finite element modelling.

For all of these NDE techniques, the propagation characteristics of 

these plate modes are of great importance.  In acoustic emission testing, 

Gorman [1] discussed how erroneous source location could be obtained using 

conventional first threshold crossing or peak arrival techniques because 

of the presence of plate modes which propagate with different and disper-

sive velocities.  Such source location errors were substantiated by Ziola 

and Gorman [7] and an alternative method for source location based on 
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cross-correlation of the flexural mode waves was demonstrated.  In the 

other mentioned NDE techniques, measurements of the velocities of the 

plate modes are useful for determining material properties and locating 

flaws.  Mal et al. [8], Veidt and Sayir [9], and Dean [10] have discussed 

how measurements of flexural mode dispersion might be useful in determin-

ing the elastic constants of composite plates.  

In this research, measurements were made of the extensional and flex-

ural plate mode velocities on four different composite laminates in three 

directions of propagation.  The ply layups for these laminates were [0
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,90
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, and [0,45,-45,90]
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.  Pencil lead breaks (Hsu-Neilsen 

sources) were used to generate the acoustic signals which were detected 

by wide band ultrasonic sensors.  The first arrival time of the extensional 

mode as a function of distance from the source was used to compute its 

velocity.  A Fourier phase technique was used to determine the flexural 

mode dispersion up to a frequency of 160 kHz.  The measurements were made 

along the two principal axes (0 and 90 degrees) in the plane of the plate 

and at an angle of 45 degrees.

The ability of existing plate theories for predicting the measured 

plate mode velocities was also investigated.  Classical plate theory (CPT) 

was successfully used to predict the velocity of the extensional plate 

mode using elastic moduli calculated from laminated plate theory.  The 

experimentally measured flexural mode dispersion curves were also compared 

with theoretical predictions based on CPT.  The lack of agreement between 

theory and experiment at the higher frequencies demonstrated the limita-

tions of CPT for composite materials. These are caused by the effects of 

shear deformation and rotatory inertia which are neglected in CPT.  Mind-

lin plate theory which includes these effects was then used to predict the 

dispersion behavior for this mode.  These predictions were in much better 

agreement with the experimental flexural mode dispersion measurements.

 

I   THEORY

 

In this research, two theoretical approaches were used for predicting 

the behavior of plate mode waves in gr/ep composite laminates.  The first 

theoretical predictions were based on classical plate theory (CPT).  This 

is a widely used approximate theory for describing motion in thin plates 

where the wavelength (

 

l

 

) is much larger than the plate thickness (h).  A 

number of authors have presented CPT in detail including Graff [11] who 
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derives the equations of motion for isotropic materials and

 

  

 

Whitney [12] 

who includes the effects of anisotropy.  For extensional mode waves in a 

symmetric orthotropic laminate, the predictions of the velocity are 

derived from the equations of motion for in-plane displacements which are 

given by  

Eq. 1

and

 . Eq. 2

In the previous equations, u

 

0

 

 and v

 

0

 

 are the midplane displacements along 

the x and y axes which are orthogonal axes in the plane of the plate, 

 

r

 

 

is the density, and the A

 

ij

 

’s are the anisotropic in-plane stiffness coef-

ficients obtained from laminated plate theory as described by Whitney [12] 

or Tsai and Hahn [13].

These equations predict two modes of propagation.  In general, one 

mode is quasi-extensional with the largest component of its particle dis-

placement along the propagation direction and the other is quasi-in-plane 

shear with the largest component of particle displacement perpendicular 

to the direction of propagation in the plane of the plate.  Along symmetry 

directions, these modes are pure mode extensional and shear-horizontal 

(SH) plate modes.  The dispersion relations for these two waves are deter-

mined by substituting a plane wave displacement into the equations of 

motion and solving the resulting Christoffel’s equation.  For propagation 

along the x axis or 0 degree direction, this procedure produces an exten-

sional mode that is pure mode and whose velocity (c

 

e

 

) is given by 

 . Eq. 3

Along the y axis, the extensional mode is also pure mode and its velocity 

is given by 

A11
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 . Eq. 4

For propagation at 45 degrees between x and y, the wave is quasi-exten-

sional with a velocity given by 

Eq. 5

where

 . Eq. 6

 

For flexural waves, CPT was again used to predict the dispersion.  In 

this case, the plate is assumed to be under a state of pure bending in 

which plane sections of the plate remain plane and perpendicular to the 

midplane of the plate.  Thus, shear deformation is not included in this 

theory.  A state of plane stress is assumed and the effects of rotatory 

inertia are also neglected.  The CPT equation of motion for an orthotropic 

composite laminate in the absence of body forces is

Eq. 7

where the D

 

ij

 

’s are the anisotropic bending stiffness coefficients 

obtained from laminated plate theory as described by Whitney [12] or Tsai 

and Hahn [13].  In the previous equation, w is the displacement along the 

z axis which is normal to the plane of the plate.

The dispersion behavior for the flexural mode using CPT is also 

obtained by substituting the displacement for a plane wave propagating 

along the direction of interest into the equation of motion.  After sub-

stitution and reduction of terms, the resulting CPT dispersion relation 

along the x axis is 

ce

A22

rh
-----=

ce

A11 2A66 A22+ +( ) R+

4rh
------------------------------------=

R A11 2A66 A22+ +( ) 2 4 A11 A66+( ) A22 A66+( )Ð 4 A12 A66+( ) 2+=
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¶4w
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 Eq. 8

where c f  is the velocity of the flexural mode and w is the angular fre-

quency.  Along the y axis, the dispersion relation is

Eq. 9

and at 45 degrees the dispersion relation is

 . Eq. 10

Unlike the predictions for the extensional mode, the flexural mode is pre-

dicted to have a velocity that is dispersive.  The velocity is predicted 

to increase as the square root of the frequency.

Although CPT yielded good results for the case of the extensional 

mode, it was found to be of limited value for the flexural mode because 

of the effects of shear deformation and rotatory inertia.  Thus, a second 

theory was also used to predict the dispersion of the flexural mode. This 

theory includes the effects of shear deformation and rotatory inertia.  It 

was put forth by Tang et al. [14] following earlier work by Yang et al 

[15] which was an extension of Mindlin plate theory[16].  A detailed pre-

sentation of this theory is beyond the scope of this paper.  However, the 

dispersion behavior for a symmetric orthotropic laminate is obtained when 

the determinant of the following matrix of coefficients is set equal to 

zero

Eq. 11

where

Eq. 12

Eq. 13

cf

D11

rh
-----4 w=

cf

D22

rh
-----4 w=

cf

1
4
- D11 4D16 2 D12 2D66+( ) 4D26 D22+ + + +( )

rh
------------------------------------------------------------------4 w=

M11 M12 M13

M21 M22 M23

M31 M32 M33

M11 D11k2lx
2 2D16k2lxly D66k2ly

2 A55 Iw2Ð+ + +=

M12 D16k2 D12 D66+( ) k2lxly+=
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Eq. 14

Eq. 15

Eq. 16

Eq. 17

Eq. 18

Eq. 19

and

 . Eq. 20

In the previous equations, l x and l y are the direction cosines for the 

propagation direction of interest, k is the wave number, 

 , Eq. 21

and

 for i,j = 4,5. Eq. 22

In Eq. 22, the ki  are shear correction factors which were determined to 

yield the best agreement with three dimensional elasticity theory when 

ki
2=5/6.  The subscript l refers to the l’th layer of the laminate and the 

Qij  are the stiffnesses for the l’th layer.  Solving the determinant for 

the wavenumber as a function of w yields a cubic in k 2.  Only the root 

which approaches zero as the frequency approaches zero is the correct 

root.  Once k as a function of w is known, the phase velocity is determined 

as a function of frequency using the relation

M13 iA55klx=

M21 D16k2 D12 D66+( ) k2lxly+=

M22 D66k2lx
2 2D16k2lxly D22k2ly

2 A44 Iw2Ð+ + +=

M23 iA44kly=

M31 iA55klxÐ=
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M33 A55k2lx
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2 r*w2Ð+=

r*,I( ) r 1,z2( ) dz
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h
2
-

z=
h
2
-

ò=

Aij kikj Qij( )
l
dz

z=-
h
2
-
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h
2
-
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 . Eq. 23

II   EXPERIMENT

The composite laminates used in this study were made of AS4/3502 

graphite/epoxy.  All four laminates consisted of sixteen plys and had a 

nominal thickness of 2.26 mm.  The dimensions were 0.508 m. along the x 

direction (0 degree ply direction) and 0.381 m. along the y direction.  

Measurements were made along the 0 degree (x direction), 45, and 90 degree 

directions for all four laminates.  The nominal lamina properties for this 

material as obtained from the manufacturer are given in Table I.  These 

values were used in the laminated plate theory calculations to obtain the 

in-plane and bending stiffness coefficients needed for the theoretical 

dispersion calculations.

For measurements of the extensional and flexural velocities, a pencil 

lead bread was used to excite the acoustic waves.  The waves were detected 

with Panametrics 3.5 MHz broad band ultrasonic transducers.  These sensors 

have been shown previously by Prosser [17] to provide flat frequency, dis-

placement sensitivity response to these low frequency plate waves.  The 

detected signals were preamplified by 40 dB with model 1220A preamplifiers 

from Physical Acoustic Corporation (PAC).  There were no filters used in 

the preamps.  The amplified signals were digitized at a sampling frequency 

of 5 MHz for the extensional measurements and 1 MHz for the flexural mea-

surements with a LeCroy 6810 transient recorder, and then stored on a per-

sonal computer for analysis.  A high sensitivity resonant AE transducer 

(PAC model R15) was positioned next to the lead break and was used to 

trigger the transient recorder.

For the extensional measurements, a single receiving sensor was used 

to detect the waves along the propagation direction of interest.  The sim-

ulated AE signal was repeated five times while the receiving transducer 

was moved over a range of distances from the source which varied from 7.62 

cm. to 17.78 cm. in 2.54 cm. increments.  The first arrival time of the 

extensional mode was then determined for each of the signals from the dig-

itized time records and plotted as a function of distance from the source.  

A linear least squares fit was used to determine the slope of the curve 

which is the velocity of the extensional mode.  This process was repeated 

cf
w
k
--=
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for each of the three directions in the four plates.  A typical plot of 

the extensional arrival time versus distance of propagation is shown in 

Figure 2.

A Fourier phase technique was used for the measurement of the flexural 

mode dispersion.  This technique has been described by a number of authors 

including Sachse and Pao [18], Pao and Sachse [19], Veidt and Sayir [9], 

Dean [10], and Alleyne and Cawley [20].  In this technique, the elastic 

wave is detected at two different distances away from the source of the 

wave along the direction of propagation of interest.  The phase ( j) of 

the wave at each position at a given frequency (f) is determined by per-

forming a Fourier Transform on the signals. The phase must be unwrapped 

to remove the 2n p uncertainty.  The phase difference ( Dj) over the dis-

tance between the two transducers ( Dx) is then computed for each fre-

quency.  The wave number and velocity are then calculated at each frequency 

by

Eq. 24

and

 . Eq. 25

The experimental setup used for these experiments is shown in Figure 

3.  Transducer separations of 1.91, 2.54, 3.18, 3.81, and 4.45 cm were 

used.  An average velocity and standard deviation for the five different 

measurements was computed.  The source and receivers were kept as nearly 

in the center of the plate as possible to minimize reflections.   

Prior to computing the FFT to determine the phase, the higher fre-

quency extensional mode and the reflections arriving later in the flexural 

mode were zeroed out in the computer.  Previous Fourier analysis of the 

flexural mode signals when digitized at much higher sampling frequencies 

(100 MHz) showed that the maximum frequency component in the flexural mode 

was about 200 kHz.  Thus, aliasing was not a concern even at the low sam-

pling frequency of 1 MHz.

III   RESULTS AND DISCUSSION

The measured and theoretical extensional velocities for all four lam-

k f( ) Dj f( )
Dx

---------=

c f( ) 2pf
k f( )
------

2pfDx
Dj f( )
---------= =



10

inates are shown in Table II. The measured velocities were consistently 

lower than the predicted velocities with the exceptions of the 90 degree 

measurements in the [0 16] and the [0 4,90 4] s plates and the 45 degree mea-

surement in the [0 16] laminate. With these exceptions, the measured veloc-

ities were all in the range of two to nine percent less than the 

theoretical velocities. This would seem to indicate that the manufactur-

er’s properties used in the theoretical calculations were somewhat higher 

than those in the actual material. Variations in material properties are 

common for these materials and are due to fiber volume variations, cure 

processing variations, and variations in resin chemistry.  The 45 degree 

[0 16] measurement was much less than theoretically predicted. It is not 

known why this discrepancy occurred and further investigation is needed. 

The remaining two exceptions, propagation at 90 degrees in the [0 16] and 

the [0 4,90 4] s laminates, were only slightly higher than predicted values.

The average measured flexural velocities for the 0, 45, and 90 degree 

directions in the [0 16] graphite epoxy plate are plotted in Figure 4 to 

Figure 6 with the standard deviation of the measured values indicated by 

error bars. The predicted velocity dispersion curves for CPT and Mindlin 

plate theory are also shown in these plots. The agreement between mea-

surement and Mindlin plate theory is excellent for the 90 degree propa-

gation direction. For propagation at 45 and 0 degrees, the measured values 

are consistently less than those predicted by theory.  The discrepancy at 

0 and 45 degrees is consistent with the differences between theory and 

experiment observed for the extensional mode.    

The effect of shear and rotatory inertia is clear when CPT and Mindlin 

plate theory are compared in these plots. They are in agreement at very 

low frequencies in all cases where the approximations of CPT are valid.  

The discrepancy increases with increasing frequency as the velocity pre-

dicted by CPT increases without bound. 

It is also apparent that the difference between Mindlin plate theory 

and CPT is much greater for the 0 and 45 degree directions than for the 

90 degree direction.  This is expected since the shear modulus is much 

smaller in comparison to the Young’s modulus in those directions.  CPT is 

based on the assumption of no shear deformation which implies an infinite 

shear modulus.  Thus, better agreement is provided by CPT when the ratio 

of the shear modulus to the Young’s modulus is larger. 
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A plot of the measured velocities and the Mindlin plate theory pre-

dictions for the [0,90] 4s  plate is shown in Figure 7.  In order to better 

view this complicated graph, the CPT predictions and the experimental 

uncertainties are not shown in the plot.  In this plate, the measured 

velocities were less than theoretical predictions for all three directions 

of propagation.  However, the measured and theoretical velocities occurred 

in the same order with the 0 degree velocity being the largest, followed 

next by the 90 degree velocity, and with the 45 degree velocity the small-

est.  The results for the other two laminates were similar with the mea-

sured velocities consistently less than predicted by theory.  This again 

seems to indicate that the actual material properties are less than the 

nominal properties used in the theoretical calculations and is consistent 

with the extensional measurements.

In summary, the velocity of the extensional plate mode and the dis-

persion of the flexural plate mode was measured along three directions of 

propagation in four graphite/epoxy laminates.  Theoretical predictions of 

the dispersion of these modes were made with CPT and Mindlin plate theory.  

CPT yielded good agreement with the extensional velocity but was shown to 

be of limited value in predicting the dispersion of the flexural mode 

because it assumes that the effects of shear deformation and rotatory 

inertia are negligible.  Mindlin plate theory, which includes these 

effects, gave much better agreement with the measured flexural dispersion.  

However, there was a consistent discrepancy between theory and experiment 

believed to be due to variations in actual material properties from those 

used in the calculations.
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Table I Lamina properties of AS4/3502 graphite epoxy.

 Lamina thickness = 1.413 X 10 -4  m.

 Density = 1550 kg/m 3 Fiber volume = 60%

 Q xx  = 145.5 GPa. Q xy  = 2.91 GPa Q yy  = 9.69 GPa Q ss  = 5.97 GPa
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Table II Measured and theoretical extensional velocities for 
AS4/3502 graphite/epoxy laminates.

Direction of Measured Theoretical
 Laminate Propagation Velocity (m/s) Velocity (m/s)
 [0 16] 0 9020 9690

45 3510 7004

90 2700 2500

 [0 4,90 4] s 0 6380 7087

45 5210 5469

90 7300 7087

 [0,90] 4s 0 6550 7087

45 5020 5469

90 6450 7087

 [0,45,-45,90] 2s 0 6050 6321

45 5990 6322

90 5750 6321
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Figure 1 Typical AE signal in thin plate identifying extension-
al and flexural plate modes.
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Figure 2 Plot of extensional arrival time versus distance of 
propagation for 90 degree propagation in [0 16] graph-
ite/epoxy plate.
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Figure 3 Experimental setup for flexural velocity measurements 
in composite plates.
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Figure 4 Measured and theoretical flexural dispersion for 0 de-
gree propagation in [0 16] graphite/epoxy plate.
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Figure 5 Measured and theoretical flexural dispersion for 45 de-
gree propagation in [0 16] graphite/epoxy plate.
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Figure 6 Measured and theoretical flexural dispersion for 90 de-
gree propagation in [0 16] graphite/epoxy plate.
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Figure 7 Measured and theoretical flexural dispersion for 0, 
45, and 90 degree propagation directions in [0,90] 4s  
graphite/epoxy plate.
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